RNAa Is Conserved in Mammalian Cells

نویسندگان

  • Vera Huang
  • Yi Qin
  • Ji Wang
  • Xiaoling Wang
  • Robert F. Place
  • Guiting Lin
  • Tom F. Lue
  • Long-Cheng Li
چکیده

BACKGROUND RNA activation (RNAa) is a newly discovered mechanism of gene activation triggered by small double-stranded RNAs termed 'small activating RNAs' (saRNAs). Thus far, RNAa has only been demonstrated in human cells and is unclear whether it is conserved in other mammals. METHODOLOGY/PRINCIPAL FINDINGS In the present study, we evaluated RNAa in cells derived from four mammalian species including nonhuman primates (African green monkey and chimpanzee), mouse, and rat. Previously, we identified saRNAs leading to the activation of E-cadherin, p21, and VEGF in human cells. As the targeted sequences are highly conserved in primates, transfection of each human saRNA into African green monkey (COS1) and chimpanzee (WES) cells also resulted in induction of the intended gene. Additional saRNAs targeting clinically relevant genes including p53, PAR4, WT1, RB1, p27, NKX3-1, VDR, IL2, and pS2 were also designed and transfected into COS1 and WES cells. Of the nine genes, p53, PAR4, WT1, and NKX3-1 were induced by their corresponding saRNAs. We further extended our analysis of RNAa into rodent cell types. We identified two saRNAs that induced the expression of mouse Cyclin B1 in NIH/3T3 and TRAMP C1 cells, which led to increased phosphorylation of histone H3, a downstream marker for chromosome condensation and entry into mitosis. We also identified two saRNAs that activated the expression of CXCR4 in primary rat adipose-derived stem cells. CONCLUSIONS/SIGNIFICANCE This study demonstrates that RNAa exists in mammalian species other than human. Our findings also suggest that nonhuman primate disease models may have clinical applicability for validating RNAa-based drugs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small RNA and transcriptional upregulation.

Small RNA molecules, such as microRNA and small interfering RNA, have emerged as master regulators of gene expression through their ability to suppress target genes in a phenomenon collectively called RNA interference (RNAi). There is growing evidence that small RNAs can also serve as activators of gene expression by targeting gene regulatory sequences. This novel mechanism, known as RNA activa...

متن کامل

Defining features and exploring chemical modifications to manipulate RNAa activity.

RNA interference (RNAi) is an evolutionary conserved mechanism by which small double-stranded RNA (dsRNA)--termed small interfering RNA (siRNA)--inhibit translation or degrade complementary mRNA sequences. Identifying features and enzymatic components of the RNAi pathway have led to the design of highly-effective siRNA molecules for laboratory and therapeutic application. RNA activation (RNAa) ...

متن کامل

Promoter-associated small double-stranded RNA interacts with heterogeneous nuclear ribonucleoprotein A2/B1 to induce transcriptional activation.

Several recent reports have demonstrated that small activating dsRNA [double-stranded RNA; saRNA (small activating dsRNA)] complementary to promoter regions can up-regulate gene expression in mammalian cells, a phenomenon termed RNAa (RNA activation). However, the mechanism of RNAa remains obscure with regard to what is the target molecule for promoter-targeted saRNA and what are the proteins i...

متن کامل

The Role of Mammalian Target of Rapamycine Signaling Pathway in Central Nervous System Cancers: A Review

Mammalian mechanistic target of rapamycine (mTOR) is a conserved serine/threonine kinase in the cellular PI3K/Akt/mTOR signaling pathway. This pathway is modified by cellular alterations such as level of energy, growth factors, stresses, as well as the increased environmental level of cancerous cytokines. In general, increase of this kinase protein function is seen in various types of cancers, ...

متن کامل

In silico investigation of lactoferrin protein characterizations for the prediction of anti-microbial properties

Lactoferrin (Lf) is an iron-binding multi-functional glycoprotein which has numerous physiological functions such as iron transportation, anti-microbial activity and immune response. In this study, different in silico approaches were exploited to investigate Lf protein properties in a number of mammalian species. Results showed that the iron-binding site, DNA and RNA-binding sites, signal pepti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010